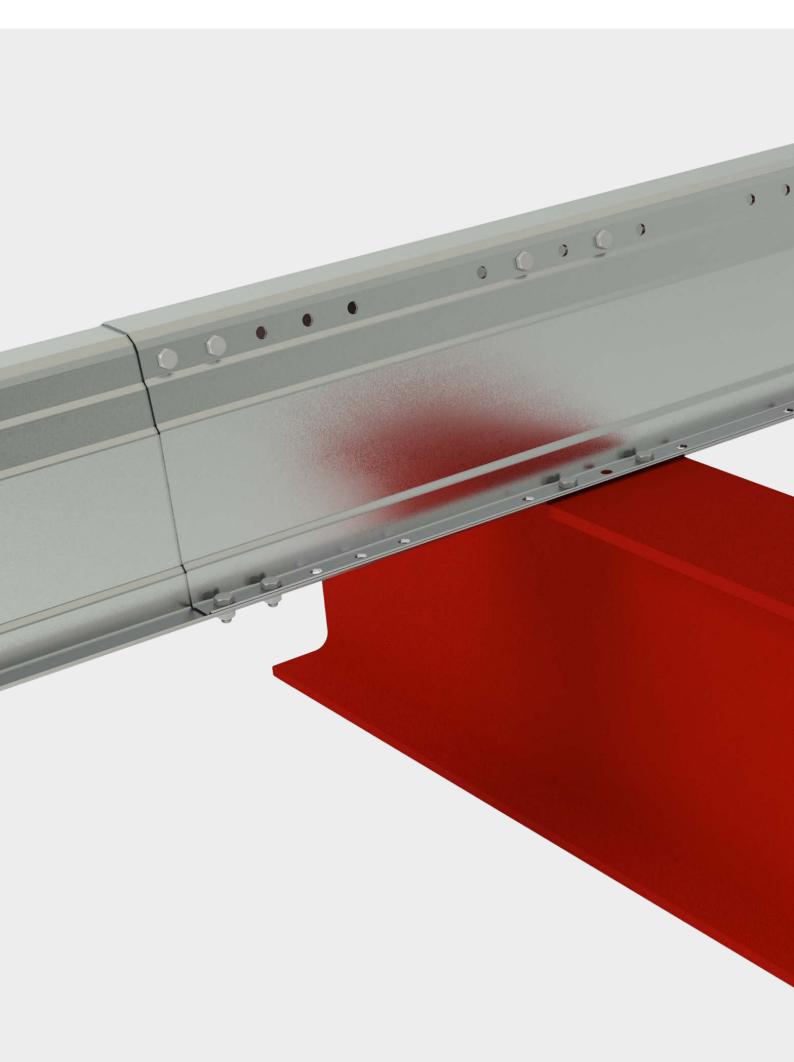


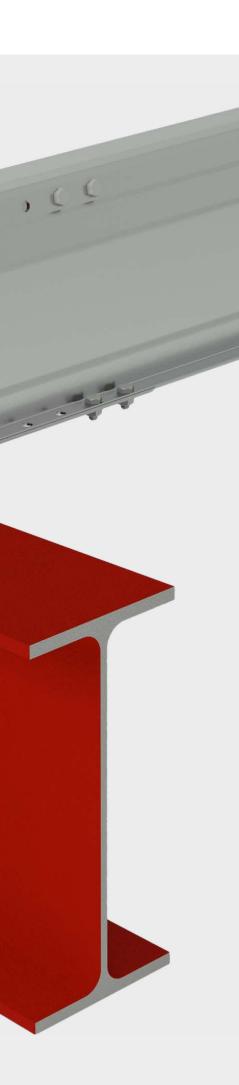
S U P E R Ω M E G Λ[®]

PROFILÉS EN ACIER LÉGER FORMÉS À FROID

Groupe O FELIZ Présentation Marquage CE Réutilisation et Recyclage	04 05 05 05
Le Superomega® Validation Numérique par Éléments Finis Programme Expérimental Gamme de Profilés Qualité des Matériaux Applications Propriétés Géométriques Standards de Perçages Connexions de Continuité et Renforcement Support au Projet Structurel	07 08 09 10 11 11 12 13 14
Superomega® 80 Géométrie de Section Propriétés Géométriques Connexions de Continuité et Renforcement	18 18 19 20
Superomega® 120 Géométrie de Section Propriétés Géométriques Connexions de Continuité et Renforcement	22 22 23 24
Superomega® 160 Géométrie de Section Propriétés Géométriques Connexions de Continuité et Renforcement	26 26 27 28
Superomega® 200 Géométrie de Section Propriétés Géométriques Connexions de Continuité et Renforcement	30 30 31 32
Superomega® 250 Géométrie de Section Propriétés Géométriques Connexions de Continuité et Renforcement	34 34 35 36

Index 03


G R O U P E O F E L I Z



Réutilisation et Recyclage

Puisque les profilés en acier léger formés à froid ne perdent pas leur rigidité au fil du temps, ces profilés sont aptes à leur réutilisation lorsqu'ils sont retirés de leur structure originelle.

En outre, l'acier est aujourd'hui un matériau pourvu d'un taux de recyclage de presque 100% qui contribue, de manière claire, à la pérennité du marché de la construction.

Le Superomega®

Ce produit est le fruit de deux années de recherche et de développement dans le but de trouver une solution innovante pour les profilés en acier léger formés à froid.

Le résultat est la section de profilés en acier léger la plus économique et résistante disponible sur le marché.

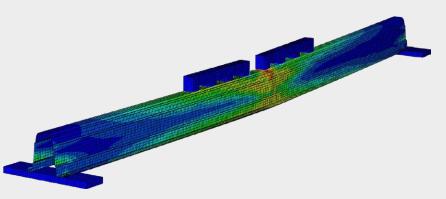
Développé par le Groupe O FELIZ en partenariat avec l'Université de Coimbra, ce profilé innovateur, de la famille des omégas permet des réductions de poids significatives par comparaison avec les solutions les plus avancées existantes sur le marché, pour le même niveau de performance structurale. Principales différences par rapport aux autres solutions présentes sur le marché:

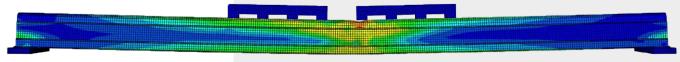
- Une plus grande économie de matériau versus la performance structurelle;
- Un profilé optimisé pour le transporte en conteneurs;
- la possibilité de définition d'une connexion de continuité sur l'aire de support ou dehors de la même;
- Perçage adapté à l'application;
- Possibilité de perçage en continu;
- Géométrie futuriste et un produit attrayant d'un point de vue esthétique.

Les profilés sont obtenus par le profilage à froid, ce qui permet une fréquence de haute production et aussi une rigueur dimensionnelle élevée.

Produits par une ligne de profilage continue, les profilés sont fabriqués sur mesure et avec plusieurs standards de perçage qui facilitent le processus de montage par le biais de la possibilité de création de connexions vissées.

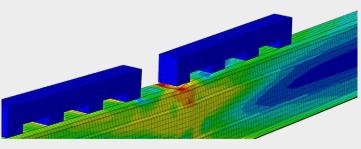
"

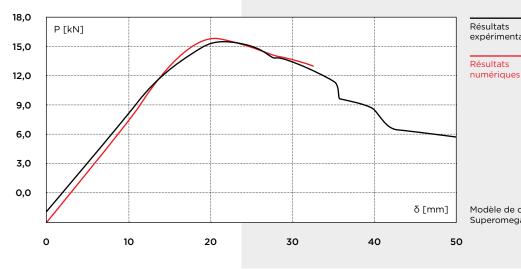

Nous pensons avoir créé un produit révolutionnaire.


Validation Numérique par Éléments Finis

Afin de valider les résultats obtenus expérimentalement et obtenir d'autres résultats associés au comportement des profilés Superomega®, une étude numérique a été développée, dans le logiciel ABAQUS, définie par trois étapes:

- 1. Calibration des modèles numériques en fonction des résultats obtenus expérimentalement lors de tests concernant la flexion des profilés Superomega® 160×1,5 et Superomega* 80×1,0, simulant le système de chargement appliqué aux tests;
- 2. Simulation du comportement des profilés des hauteurs 80, 120, 160, 200 et 250 mm et avec 1,50 mm d'épaisseur, simplement soutenues et soumises à un chargement réparti uniformément;
- 3. Calibration et simulation du comportement des connexions.

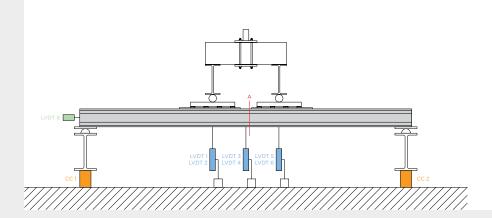




Résultats expérimentaux Résultats

Modèle de calibration: Superomega® 160×1,5

Programme Expérimental


Afin de valider les paramètres géométriques obtenus analytiquement et de vérifier également les performances structurelles du Superomega*, un programme expérimental de tests de flexion d'un ensemble représentatif de trois (3) sections a été réalisé:

- Superomega® 80×1,0
- Superomega® 160×1,5
- Superomega® 250×2,0

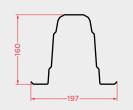

Les tests expérimentaux ont été effectués selon l'annexe A.3 de la norme EN 1993-1-3, qui régule le test de flexion des éléments formés à froid. Pour les tests de flexion (article A.3.4), la norme exige que : le spécimen ne doit pas être inférieur à 15 fois la plus grande dimension en coupe transversale ; l'espacement de probables éléments de contreventement ne doit pas être inférieur à celui en service ; une paire d'actions doit être appliquée simulant une constante de momentum intermédiaire avec une dimension entre 20 et 33% de la portée totale du spécimen.

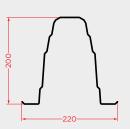
Chaque spécimen testé avait une longueur L + L0, de 3000 mm, étant la portée libre entre les supports, L, de 2900 mm.

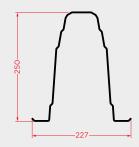
Les spécimens ont été testés comme étant simplement soutenus par l'application de deux charges placées symétriquement à 300 mm par rapport à la mi-portée, afin d'obtenir une portée constante centrale de 600 mm (correspondant à 21% de la portée totale entre les supports). Les tests ont été effectués par contrôle de déformation à une vitesse de 0,02 mm/s.



Mise en page des tests




Gamme de Profilés


La gamme est composée de cinq (5) profilés avec une section transversale de type Ω , avec des hauteurs allant de 80 à 250 mm et des épaisseurs allant de 1,0 à 3,0 mm.

Les propriétés géométriques mentionnées dans ce document ont été déterminées analytiquement pour chaque type de profilé, en fonction de la hauteur, de l'épaisseur et de la qualité de l'acier tel que défini dans Eurocode 3. La section a été développée

dans le but de maximiser les domaines efficaces des sections de classe 4 qui, comme le savent les concepteurs, à la lumière de l'Eurocode 3, peuvent être pénalisatrices.

Même dans les sections plus minces, il est possible d'obtenir des taux d'utilisation de la section supérieurs à 95% en raison de l'influence des renforts longitudinaux sur les sections plus élancées de la section. Le résultat, en pratique, est la réduction de la quantité d'acier nécessaire pour la même performance structurelle.

Castian	Poids	Hauteur h	Largeur b	Aire de Peinture		
Section	kg/m	mm	mm	m²/m		
Superomega® 80×1,0	2,39					
Superomega® 80×1,2	2,86	80	176	0,608		
Superomega® 80×1,5	3,58					
Superomega® 120×1,0	3,05					
Superomega® 120×1,2	3,66	120	101	0.770		
Superomega® 120×1,5	4,58	120	191	0,778		
Superomega® 120×2,0	6,11					
Superomega® 160×1,5	5,52					
Superomega® 160×2,0	7,36	160	197	0,938		
Superomega® 160×2,5	9,20					
Superomega® 200×1,5	6,54					
Superomega® 200×2,0	8,71	200	220	1,110		
Superomega® 200×2,5	10,89					
Superomega® 250×2,0	10,27					
Superomega® 250×2,5	12,83	250	227	1,308		
Superomega® 250×3,0	15,40					

Qualité des Matériaux

Le Superomega® est fabriqué en deux (2) classes d'acier de construction pré-galvanisé: S280GD et S350GD en tôle pré-galvanisée ou Magnelis® selon la norme EN 10346.

À titre facultatif, ce produit peut être fourni avec un autre type de finition de surface, à savoir la laque en RAL à définir. Conditions de fourniture sur demande.

Classe d'Acier	Module d'Élasticité	Résistance à la Traction
Classe a Acier	MPa	MPa
S280GD	280	360
S350GD	350	420

Pré-Galvanisé	Masse de Revêtement Superficiel	Épaisseur du Revêtement Superficiel
Pre-Gaivanise	g/m²	μm/face
Z200	200	14
Z275	275	20

Magnalia'	Masse de Revêtement Superficiel	Épaisseur du Revêtement Superficiel
Magnelis*	g/m²	μm/face
ZM175	175	14
ZM250	250	20
ZM310	310	25

Applications

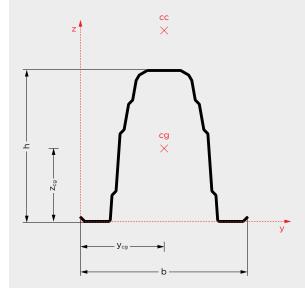
La polyvalence du Superomega® permet une applicabilité élargie à divers types de structures ainsi que l'adaptation à presque tous les types de matériaux.

Ce profilé peut être appliqué aux:

- Structures secondaires pour le support des revêtements et des façades;
- Diviseurs intérieurs;
- Structures pour mezzanines et étages intermédiaires;
- · Couvertures légères en LSF;

Propriétés Géométriques

Les propriétés géométriques des sections qui composent la gamme ont été déterminées conformément aux Eurocodes structurels dans les différentes parties, à savoir: EN 1993-1-1, EN 1993-1-3 et EN 1993-1-5.


Pour la détermination des propriétés géométriques, on a considéré la réduction de l'épaisseur nominale du noyau en acier, correspondant à l'épaisseur de la galvanisation, comme le suggère la clause 3.2.4 de la norme EN 1993-1-3, pour un revêtement de zinc Z275 (20 µm/face).

Dans l'analyse de la section, on a considéré l'influence des coins arrondis, ainsi que la possibilité de leur représentation en sections droites dans le but d'évaluer les propriétés géométriques, comme prévu à la clause 5.1 de la norme EN 1993-1-3.

Les proportions géométriques des différentes sections qui permettent l'application des méthodes simplifiées prévues dans la norme précitée ont été vérifiées. Les phénomènes d'instabilité locale de la section ont été intégrés à l'analyse par la détermination des propriétés efficaces de la section sous compression, de flexion selon l'axe de la plus grande inertie (positive et négative) et de la flexion selon l'axe de la moindre inertie.

Le système d'axes adopté pour l'emplacement de cg et cc est illustré dans la figure ci-dessous.

Système d'axes de référence

Légende

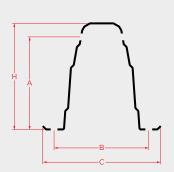
cg Centre de gravité
cc Centre de découpe
h Hauteur de la section
b Largeur de la section

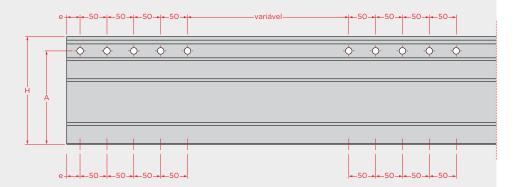
 $y_{cg} = y_{cc}$ Position y du centre de gravité et du

centre de découpe

Z_{cg} Position z du centre de gravité Z_{cc} Position z du centre de découpe

Standards de Perçage

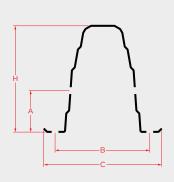

Le Superomega® peut être fourni sans perçage ou avec deux (2) profilés de perçage différents, selon les exigences de conception et comme expliqué ci-dessous.

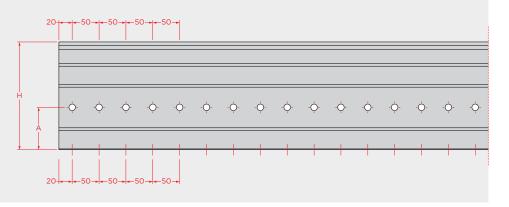

Standard A — Perçage personnalisé

Perçage Ø14 pour la vis M10 de classe 8.8 sur les onglets inférieurs de la section et sur la partie supérieure des bandes, défini en fonction des besoins du projet. Habituellement, ce perçage sera défini sur les supports et dans les zones de chevauchement pour garantir la transmission des efforts de continuité. Le perçage est réalisé en blocs de cinque (5) colonnes de trous espacés d'une distance de 50 mm.

La distance entre l'extrémité du profilé et l'axe de la première colonne de trous peut être déterminée entre 25-30-35-40-45-50 mm.

Castian	Н	Α	В	С	е	Dawasas		
Section	mm	mm	mm	mm	mm	Perçage		
Superomega® 80	80	54	132	176	25			
Superomega® 120	120	93	147	191	30			
Superomega® 160	160	134	153	197	35 40	Ø14		
Superomega® 200	200	174	175	220	45			
Superomega® 250	250	224	182	227	50			

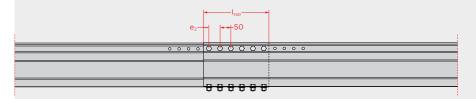

Standard B — Perçage continu


Perçage Ø14 pour la vis de classe 8.8 avec un espacement de 50/50 mm entre les axes des trous disposés dans les onglets de la section inférieure et les noyaux de section à la hauteur A (voir tableau ci-dessous).

La distance entre l'extrémité du profilé et l'axe de la première colonne de trous est fixée: 20 mm.

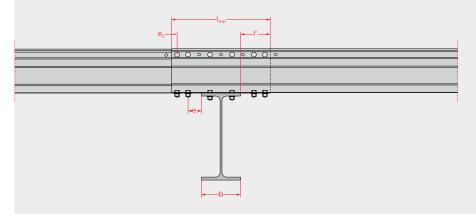
Aux deux extrémités de la tige, pour que la distance soit de 20 mm au centre du premier trou, il faut que la longueur de la pièce se termine en 40 ou 90 mm.

Section	Н	Α	В	С	Davasara		
Section	mm	mm	mm	mm	Perçage		
Superomega® 80	80	54	132	176			
Superomega® 120	120	58	147	191			
Superomega® 160	160	78	153	197	Ø14		
Superomega® 200	200	78	175	220			
Superomega® 250	250	104	182	227			

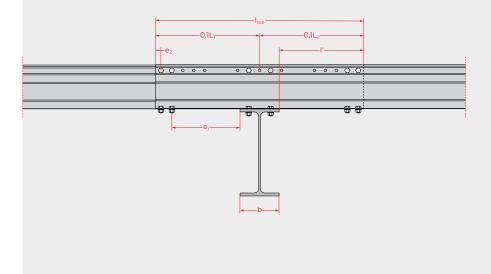

Afin de permettre la transmission des efforts de continuité dans les situations de modification, des connexions standardisées ont été définies pour chacune des situations selon le type de profilé et le besoin éventuel de renforcement dans la zone de modification (épissure).

Les connexions définies sont valables pour les classes en acier S280GD et S350GD.

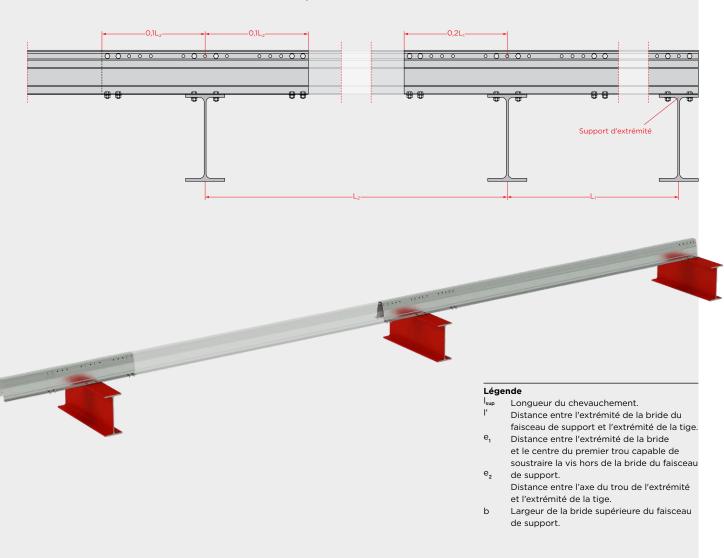
On considère quatre (4) types de modifications (épissures) et renforts détaillés ci-dessous pour les quatre (4) configurations:


1. Modification simple entre supports

• La connexion permet la modification des éléments par le chevauchement dans n'importe quelle position dans la zone de portée libre de la tige et assure la transmission des efforts de continuité.


2. Modification simple sur le support

• La connexion assure la transmission des efforts de continuité des éléments dans l'aire sur le support.


3. Renfort sur le support

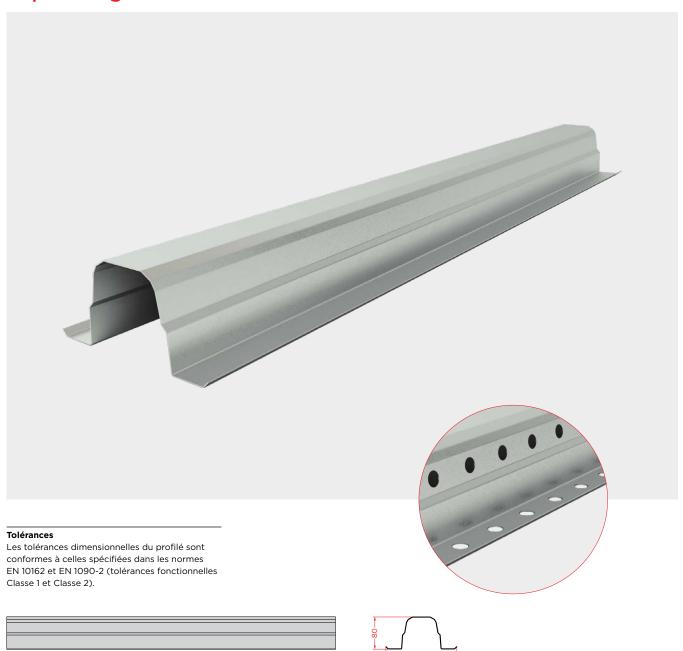
- La connexion permet de renforcer l'élément dans la zone des supports car il est soumis à des efforts de flexion et à des forces concentrées dans cette région, en évitant le surdimensionnement de la tige dans la zone à mi-portée;
- Il est recommandé que la longueur relative de chevauchement soit comprise entre 10 et 20% de la longueur de la portée adjacente.

4. Renfort de la portée d'extrémité

- Dans des solutions de faisceaux continus avec quatre (4) portées ou plus, les trous d'extrémité peuvent être renforcés en recouvrant (deux)
 2 pannes avec le même profilé tout le long de la portée, afin de résister aux contraintes les plus élevées auxquelles cette section est soumise;
- Le chevauchement de la portée de l'extrémité doit s'étendre à 10 ou 20% de la longueur de la portée interne adjacente;
- L'adoption de ce renforcement est facultative pour les faisceaux avec quatre (4) ou cinq (5) travées, mais obligatoire pour les faisceaux de six (6) ou plus travées.


Support au projet structurel

Pour faciliter le travail des ingénieurs de structure,
O FELIZ met à leur disposition un outil informatique pour le dimensionnement du cadre secondaire avec les sections
Superomega® selon les Eurocodes structurels.


Cette application permet, de manière simple et intuitive, d'effectuer les contrôles de sécurité dans des conditions limites ultimes et des conditions limites de service pour des conditions de conception facilement paramétrables par le concepteur.

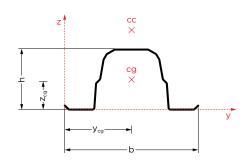
En cas de doute, contactez notre Département Technique: dt@ofeliz.com

Superomega® 80

Superomega® 80

Superomega® 80 avec perçage continu

Propriétés Géométriques


				Prop	riétés	de la S	ection	Brute						
	Poids		Largeur	1 -	Épai	sseur				Section	n Brute			
Section	Polas	h	b	Peinture	t _{nom}	t _{eff}	A _{brute}	$\mathbf{I}_{y,brute}$	I _{z,brute}	l _w	l _t	$Y_{cg}=Y_{cc}$	\mathbf{Z}_{cg}	Z _{cc}
	kg/m	mm	mm	m²/m	mm	mm	cm²	cm⁴	cm ⁴	cm ⁶	x10-4 cm4	mm	mm	mm
Superomega® 80×1,0	2,39				1,0	0,96	2,92	28,02	69,24	223,09	89,76			
Superomega* 80×1,2	2,86	80	176	0,608	1,2	1,16	3,53	33,86	83,67	269,57	158,35	88,0	36,3	99,2
Superomega® 80×1,5	3,58				1,5	1,46	4,44	42,62	105,31	339,29	315,73			

S280GD

					Prop	riété	s de l	a Sec	tion	Effica	ce								
	Compression Flexion Positive de l'Axe Y Flexion Négative de l'Axe Y														Flexion de l'Axe Z				
Section	A_{eff}	$Y_{cg,eff}$	$Z_{cg,eff}$	A _{eff}	l _{y,eff}	$W_{y,eff}$	$Y_{cg,eff}$	$Z_{cg,eff}$	A_{eff}	I _{y,eff}	$W_{y,eff}$	$Y_{cg,eff}$	$Z_{cg,eff}$	A _{eff}	l _{z,eff}	$W_{z,eff}$	$Y_{cg,eff}$	$Z_{cg,eff}$	
	cm²	mm	mm	cm²	cm⁴	cm³	mm	mm	cm²	cm⁴	cm³	mm	mm	cm²	cm⁴	cm³	mm	mm	
Superomega* 80×1,0	2,79	88,0	36,2	2,86	26,86	6,16	88,0	35,4	2,86	27,20	6,49	88,0	37,1	2,90	68,72	7,78	88,3	36,4	
Superomega® 80×1,2	3,48	88,0	36,8	3,53	33,86	7,93	88,0	36,3	3,48	33,28	7,88	88,0	36,8	3,51	83,02	9,40	88,3	36,4	
Superomega* 80×1,5	4,43	88,0	36,4	4,44	42,62	9,98	88,0	36,3	4,43	42,44	9,97	88,0	36,4	4,41	104,44	11,82	88,4	36,4	

S350GD

					Prop	riété	s de l	la Sec	tion	Effica	ice							
	Y	Fle	xion Né	gative	de l'Ax	e Y		Flexio	n de l'	Axe Z								
Section	A _{eff}	$\mathbf{Y}_{cg,eff}$	$Z_{cg,eff}$	A _{eff}	I _{y,eff}	$W_{y,eff}$	$\mathbf{Y}_{cg,eff}$	$\mathbf{Z}_{cg,eff}$	A _{eff}	I _{y,eff}	$W_{y,eff}$	$\mathbf{Y}_{cg,eff}$	$\mathbf{Z}_{cg,eff}$	A _{eff}	I _{z,eff}	$\mathbf{W}_{z,eff}$	$Y_{cg,eff}$	$\mathbf{Z}_{cg,eff}$
	cm²	mm	mm	cm²	cm ⁴	cm³	mm	mm	cm²	cm⁴	cm³	mm	mm	cm²	cm ⁴	cm³	mm	mm
Superomega* 80×1,0	2,73	88,0	36,2	2,83	26,35	5,98	88,0	35,0	2,82	26,75	6,45	88,0	37,5	2,88	68,31	7,71	88,6	36,5
Superomega* 80×1,2	3,39	88,0	36,5	3,48	32,88	7,59	88,0	35,7	3,45	32,80	7,84	88,0	37,2	3,51	83,02	9,40	88,3	36,4
Superomega* 80×1,5	4,39	88,0	36,8	4,44	42,62	9,98	88,0	36,3	4,39	41,91	9,92	88,0	36,8	4,41	104,44	11,82	88,4	36,4

Légende

 $\begin{array}{lll} A_{\text{brute}} & \text{Aire brute de la section transversale.} \\ I_{\text{y,brute}} & \text{Inertie de la section brute de l'axe yy.} \\ I_{\text{z,brute}} & \text{Inertie de la section brute de l'axe zz.} \\ I_{\text{w}} & \text{Constante de déformation.} \end{array}$

L Constante de torsion.

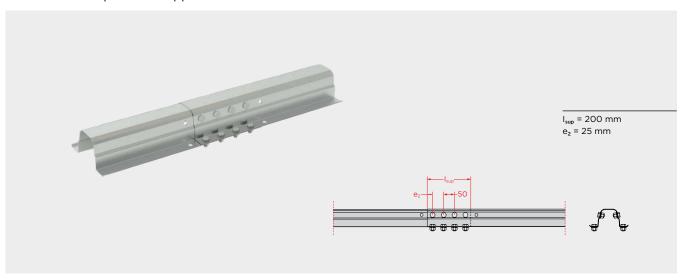
CG Centre de gravité.

CC Centre de découpe.

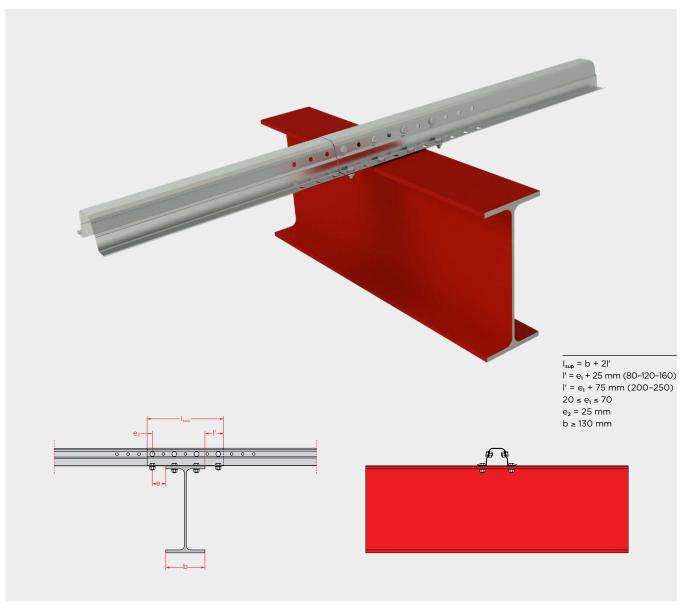
 $\begin{array}{ll} {\sf A}_{\sf eff} & {\sf Aire} \ {\sf efficace} \ {\sf de} \ {\sf la} \ {\sf section}. \\ {\sf I}_{\sf y,eff} & {\sf Inertie} \ {\sf de} \ {\sf la} \ {\sf section} \ {\sf efficace} \ {\sf de} \ {\sf l'axe} \ {\sf yy}. \\ {\sf W}_{\sf y,eff} & {\sf Module} \ {\sf \'elastique} \ {\sf de} \ {\sf la} \ {\sf section} \ {\sf efficace} \end{array}$

de l'axe yy.

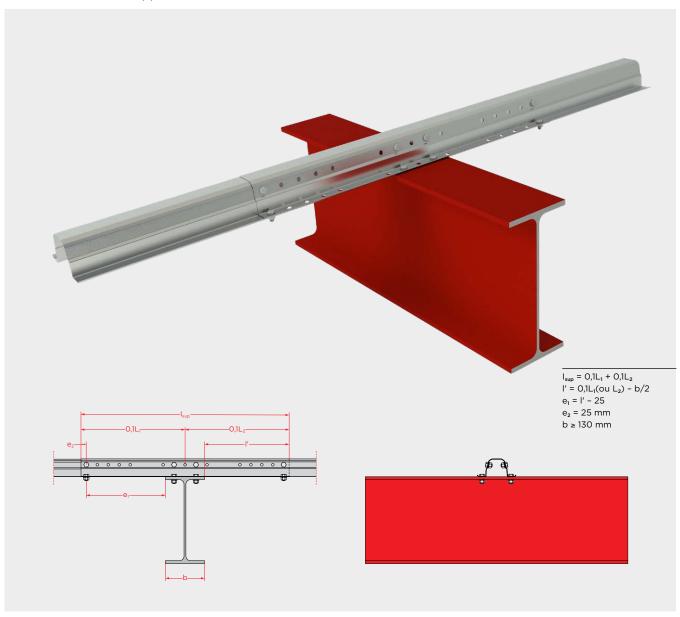
 $I_{z,eff}$ Inertie de la section efficace de l'axe zz. $W_{z,eff}$ Module élastique de la section efficace


de l'axe zz.

cg,eff Centre de gravité de la section efficace.


Note

Les poids indiqués sont des poids théoriques calculés à partir des dimensions nominales de la section et sont sensibles aux variations dans les tolérances d'acier prévues à la norme EN 10051.


1. Modification simple entre supports

2. Modification simple sur le support

3. Renforcement sur le support

Légende

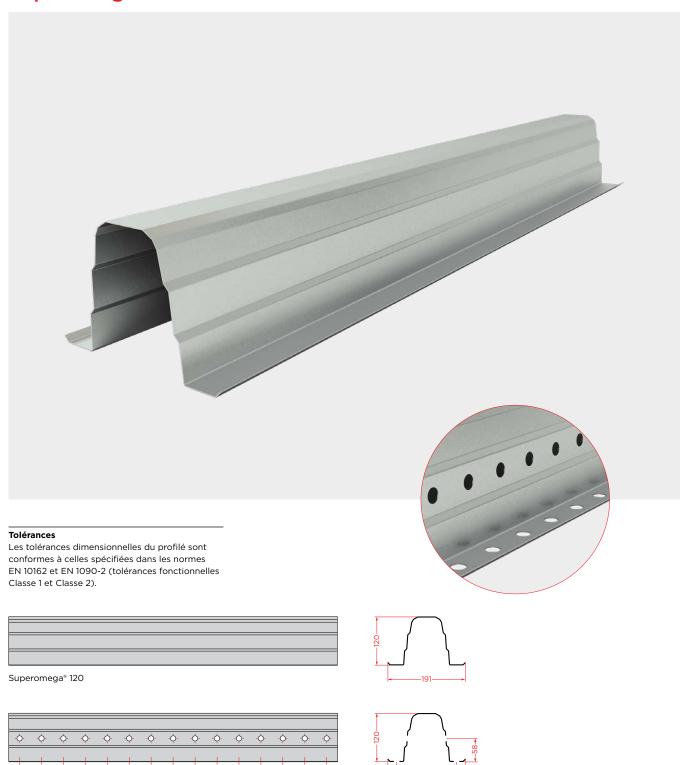
I_{sup} Longueur du chevauchement.

l' Distance entre l'extrémité de la bride de support et l'extrémité de la tige.

 ${\sf e_1}$ Distance entre l'extrémité de la bride et le centre de la vis d'extrémité.

 ${\rm e_2}$ Distance entre le centre de la vis d'extrémité et l'extrémité de la tige.

 $L_1 e \, L_2$ Longueurs des portée adjacentes au support.


b Largeur de da bride supérieure du faisceau de support.

Notes

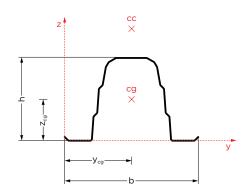
Vis M10 classe 8.8.

Les rondelles pour les vis de la bride supérieure doivent avoir un rayon externe ≤ 12 mm.

Superomega® 120

Superomega® 120 avec perçage continu

Propriétés Géométriques


				Prop	riétés	de la S	ection	Brute																						
Poids		Hauteur	Largeur	Aire	Épai	sseur				Section	n Brute																			
Section	Polas	h	b	Peinture	t _{nom}	t _{eff}	A _{brute}	$I_{y,brute}$	I _{z,brute}	I _w	l _t	$Y_{cg} = Y_{cc}$	\mathbf{Z}_{cg}	Z _{cc}																
	kg/m	mm	mm	m²/m	mm	mm	cm²	cm ⁴	cm⁴	cm ⁶	x10-4 cm4	mm	mm	mm																
Superomega® 120×1,0	3,05				1,0	0,96	3,73	73,73	102,70	583,53	114,70																			
Superomega® 120×1,2	3,66	120	192	0,778	0,778	0.770	0.770	0.770	0.770	0.770	0.770	0.770	0.770	0.770	0.770	0.770	0.770	0.770	0.770	0.770	1,2	1,16	4,51	89,09	124,10	705,10	202,35	OF 7	EE O	151.7
Superomega® 120×1,5	4,58	120	192			1,5	1,46	5,68	112,12	156,18	887,36	403,45	95,7	55,8	151,3															
Superomega® 120×2,0	6,11																						2,0	1,96	7,62	150,52	209,68	1191,37	976,12	

S280GD

			'		Prop	oriété	s de	la Sec	tion	Effica	ce								
	Co	mpress	ion	Fl	exion Po	sitive o	le l'Axe	Y	Flexion Négative de l'Axe Y						Flexion de l'Axe Z				
Section	A _{eff}	$Y_{cg,eff}$	$Z_{cg,eff}$	A _{eff}	I _{y,eff}	$W_{y,eff}$	Y _{cg,eff}	$Z_{cg,eff}$	A _{eff}	I _{y,eff}	$W_{y,eff}$	$Y_{cg,eff}$	$\mathbf{Z}_{cg,eff}$	A _{eff}	I _{z,eff}	$W_{z,eff}$	Y _{cg,eff}	$Z_{cg,eff}$	
	cm²	mm	mm	cm²	cm ⁴	cm³	mm	mm	cm²	cm ⁴	cm³	mm	mm	cm²	cm ⁴	cm³	mm	mm	
Superomega® 120×1,0	3,52	95,7	56,7	3,67	71,17	11,07	95,7	54,7	3,62	70,31	11,42	95,7	57,4	3,68	98,62	10,17	97,0	56,6	
Superomega® 120×1,2	4,36	95,7	57,0	4,51	89,06	14,08	95,7	55,8	4,42	86,11	13,88	95,7	57,0	4,47	120,55	12,47	96,6	56,4	
Superomega® 120×1,5	5,56	95,7	56,8	5,68	112,09	17,73	95,7	55,8	5,61	109,96	17,58	95,7	56,5	5,65	153,61	15,96	96,3	56,1	
Superomega* 120×2,0	7,54	95,7	56,3	7,62	150,48	23,80	95,7	55,8	7,60	149,98	23,77	95,7	55,9	7,60	208,38	21,71	96,0	55,9	

S350GD

					Prop	oriété	s de	la Sec	ction	Effica	ce							
	Compression Flexion Positive de l'Axe Y Flexion Négative de l'Axe Y Flexion de l'Axe Z Section A _{eff} Y _{cg,eff} Z _{cg,eff} A _{eff} I _{y,eff} W _{y,eff} Y _{cg,eff} Z _{cg,eff} A _{eff} I _{y,eff} W _{y,eff} Y _{cg,eff} Z _{cg,eff} A _{eff} I _{z,eff} W _{z,eff} Y _{cg,eff} X _{cg,eff} A _{eff} I _{y,eff} Y _{cg,eff} X																	
Section	A _{eff}	Y _{cg,eff}	$Z_{cg,eff}$	A _{eff}	I _{y,eff}	$W_{y,eff}$	Y _{cg,eff}	$Z_{cg,eff}$	A _{eff}	I _{y,eff}	W _{y,eff}	Y _{cg,eff}	$Z_{cg,eff}$	A _{eff}	I _{z,eff}	$W_{z,eff}$	Y _{cg,eff}	$Z_{cg,eff}$
	cm²	mm	mm	cm²	cm⁴	cm³	mm	mm	cm²	cm⁴	cm³	mm	mm	cm²	cm⁴	cm³	mm	mm
Superomega® 120×1,0	3,38	95,7	57,3	3,64	70,06	10,81	95,7	54,2	3,58	69,05	11,33	95,7	58,0	3,66	97,15	9,97	97,5	56,9
Superomega® 120×1,2	4,28	95,7	57,1	4,46	86,92	13,58	95,7	55,0	4,37	84,76	13,79	95,7	57,5	4,44	118,95	12,26	97,1	56,6
Superomega* 120×1,5	5,51	95,7	57,3	5,68	112,09	17,73	95,7	55,8	5,56	108,48	17,48	95,7	56,9	5,62	151,83	15,71	96,6	56,4
Superomega® 120×2,0	7,48	95,7	56,7	7,62	150,48	23,80	95,7	55,8	7,55	148,31	23,65	95,7	56,3	7,57	206,36	21,44	96,3	56,1

Légende

 $\begin{array}{lll} A_{\text{brute}} & \text{Aire brute de la section transversale.} \\ I_{\text{y,brute}} & \text{Inertie de la section brute de l'axe yy.} \\ I_{\text{z,brute}} & \text{Inertie de la section brute de l'axe zz.} \\ I_{\text{w}} & \text{Constante de déformation.} \end{array}$

l_t Constante de terormation.

l_t Constante de torsion.

CG Centre de gravité.

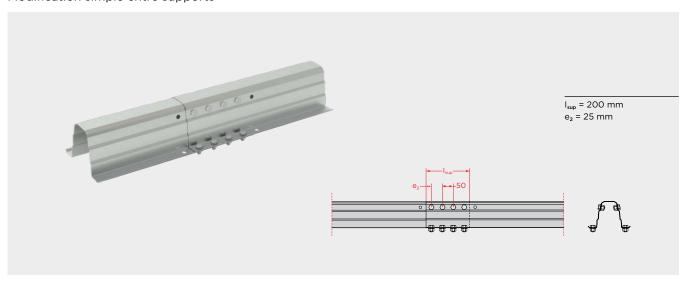
CC Centre de décourse

 $\begin{array}{ll} {\rm CC} & {\rm Centre~de~d\'ecoupe.} \\ {\rm A_{\rm eff}} & {\rm Aire~efficace~de~la~section.} \\ {\rm I_{y,eff}} & {\rm Inertie~de~la~section~efficace~de~l'axe~yy.} \end{array}$

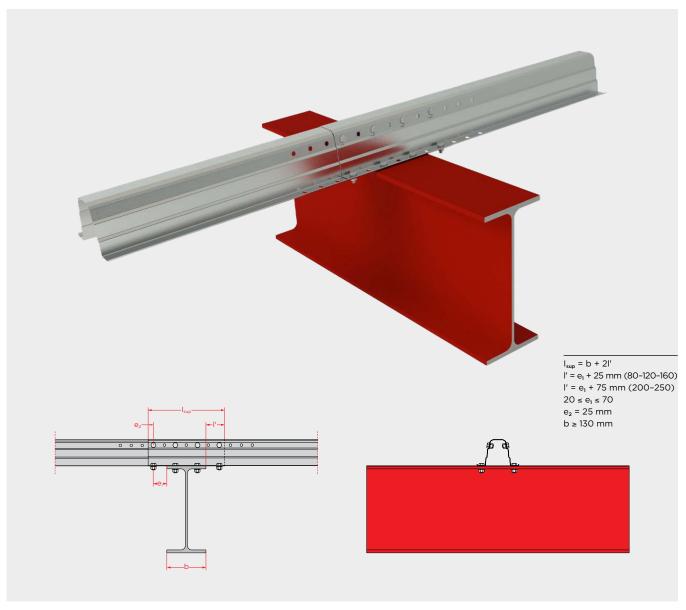
W_{y,eff} Module élastique de la section efficace

de l'axe yy.

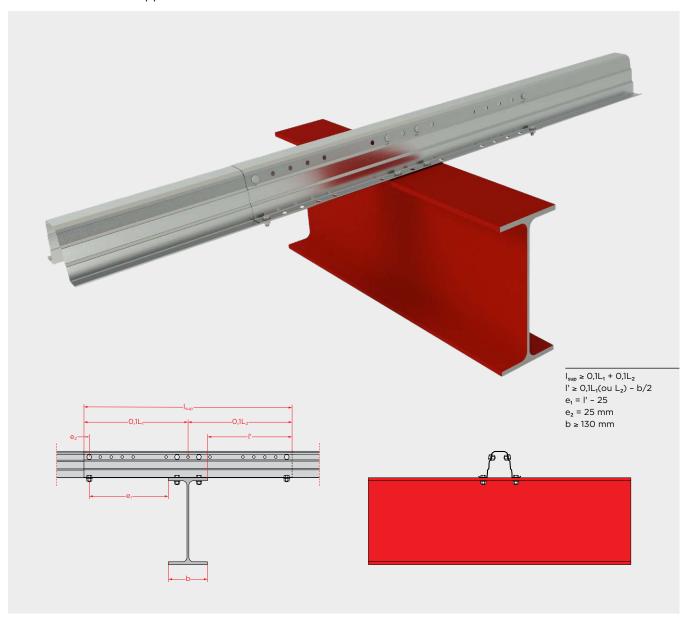
 $I_{z,eff}$ Inertie de la section efficace de l'axe zz. $W_{z,eff}$ Module élastique de la section efficace


de l'axe zz.

cg,eff Centre de gravité de la section efficace.


Note

Les poids indiqués sont des poids théoriques calculés à partir des dimensions nominales de la section et sont sensibles aux variations dans les tolérances d'acier prévues à la norme EN 10051.


1. Modification simple entre supports

2. Modification simple sur le support

3. Renforcement sur le support

Légende

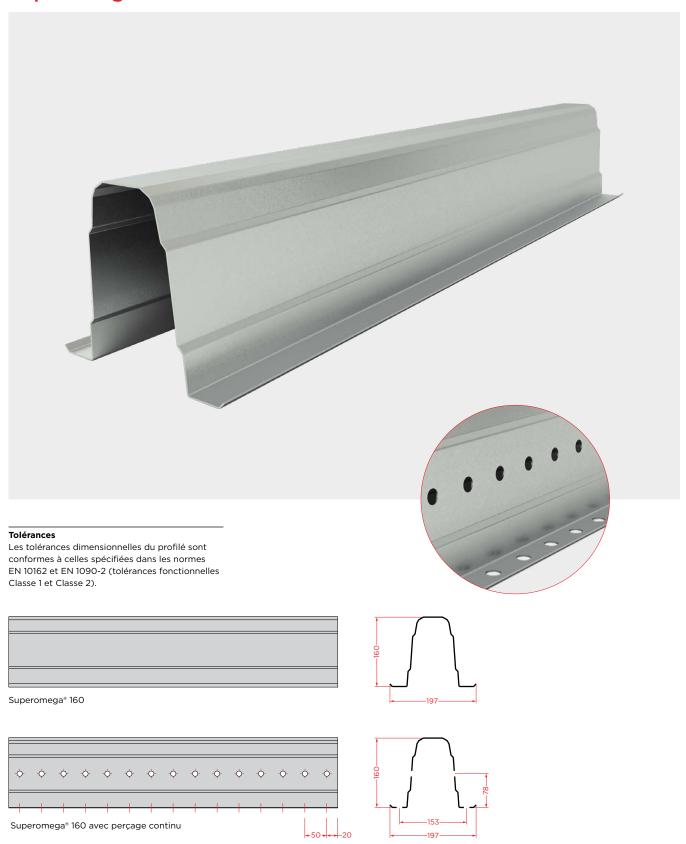
I_{sup} Longueur du chevauchement.

l' Distance entre l'extrémité de la bride de support et l'extrémité de la tige.

e₁ Distance entre l'extrémité de la bride et le centre de la vis d'extrémité.

 ${\rm e_2}$ Distance entre le centre de la vis d'extrémité et l'extrémité de la tige.

 $L_1 \, e \, L_2$ Longueurs des portée adjacentes au support.


b Largeur de da bride supérieure du faisceau de support.

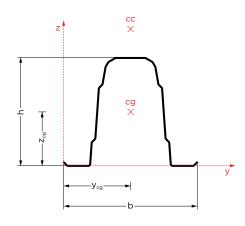
Notes

Vis M10 classe 8.8.

Les rondelles pour les vis de la bride supérieure doivent avoir un rayon externe \leq 12 mm.

Superomega® 160

Propriétés Géométriques


				Prop	riétés	de la S	ection	Brute						
Section Poids Hauteur h Largeur h Épaisseur Section Brute h Largeur h Epaisseur Section Brute t _{nom} t _{eff} A _{brute} I _{z,brute} I _w I _t Y _{cg} =Y _{cc} Z _{cg}														
Section	Polas	h	b	Peinture	t _{nom}	t _{eff}	A_{brute}	$I_{y,brute}$	I _{z,brute}	I _w	l _t	$Y_{cg} = Y_{cc}$	\mathbf{Z}_{cg}	Z _{cc}
	kg/m	mm	mm	m²/m	mm	mm	cm²	cm⁴	cm⁴	cm ⁶	x10-4 cm4	mm	mm	mm
Superomega® 160×1,5	5,52				1,50	1,46	6,85	227,02	195,10	1961,97	486,64			
Superomega® 160×2,0	7,36	160	197	0,938	2,00	1,96	9,19	304,77	261,91	2633,87	1177,39	98,5	75,4	205,6
Superomega® 160×2,5	9,20				2,50	2,46	11,54	382,52	328,73	3305,78	2327,87			

S280GD

					Prop	riété	s de l	a Sec	tion	Effica	ce							
	Co	mpress	ion	FI	exion Po	sitive c	le l'Axe	Y	Fle	exion Né	gative	de l'Ax	e Y		Flexio	n de l'	Axe Z	
Section	A_{eff}	$Y_{cg,eff}$	$Z_{cg,eff}$	A _{eff}	I _{y,eff}	$W_{y,eff}$	$\mathbf{Y}_{cg,eff}$	$Z_{cg,eff}$	A _{eff}	I _{y,eff}	$W_{y,eff}$	$\mathbf{Y}_{cg,eff}$	$Z_{cg,eff}$	A _{eff}	I _{z,eff}	$W_{z,eff}$	$\mathbf{Y}_{cg,eff}$	$Z_{cg,eff}$
	cm²	mm	mm	cm²	cm⁴	cm³	mm	mm	cm²	cm⁴	cm³	mm	mm	cm²	cm⁴	cm³	mm	mm
Superomega® 160×1,5	6,30	98,5	76,2	6,85	227,00	27,15	98,5	75,4	6,78	223,05	26,93	98,5	76,2	6,56	183,07	18,08	101,2	76,3
Superomega® 160×2,0	9,14	98,5	75,8	9,19	304,73	36,45	98,5	75,4	9,18	303,76	36,40	98,5	75,6	9,13	256,97	25,92	99,2	75,9
Superomega* 160×2,5	11,48	98,5	75,7	11,54	382,47	45,75	98,5	75,4	11,54	382,52	45,76	98,5	75,4	11,50	325,73	32,95	98,8	75,6

S350GD

					Prop	riété	s de l	a Sec	tion	Effica	ce							
	Co	mpress	ion	FI	exion Po	sitive o	de l'Axe	Y	Fle	exion Né	gative	de l'Ax	e Y		Flexio	on de l'	Axe Z	
Section	A _{eff}	Y _{cg,eff}	$Z_{cg,eff}$	A _{eff}	I _{y,eff}	$W_{y,eff}$	Y _{cg,eff}	$Z_{cg,eff}$	A_{eff}	I _{y,eff}	$W_{y,eff}$	$\mathbf{Y}_{cg,eff}$	$Z_{cg,eff}$	A _{eff}	I _{z,eff}	W _{z,eff}	$Y_{cg,eff}$	$Z_{cg,eff}$
	cm²	mm	mm	cm²	cm ⁴	cm³	mm	mm	cm²	cm ⁴	cm³	mm	mm	cm²	cm ⁴	cm³	mm	mm
Superomega® 160×1,5	6,12	98,5	76,8	6,85	227,00	27,15	98,5	75,4	6,73	220,33	26,78	98,5	76,7	6,49	181,19	17,80	101,8	76,3
Superomega* 160×2,0	8,77	98,5	76,2	9,19	304,73	36,45	98,5	75,4	9,12	300,70	36,23	98,5	76,0	9,01	253,89	25,43	99,8	75,9
Superomega® 160×2,5	11,46	98,5	75,8	11,54	382,47	45,75	98,5	75,4	11,52	381,56	45,70	98,5	75,5	11,50	325,73	32,95	98,8	75,6

Légende

 $\begin{array}{lll} A_{\text{brute}} & \text{Aire brute de la section transversale.} \\ I_{\text{y,brute}} & \text{Inertie de la section brute de l'axe yy.} \\ I_{\text{z,brute}} & \text{Inertie de la section brute de l'axe zz.} \\ I_{\text{w}} & \text{Constante de déformation.} \end{array}$

l_t Constante de deformation.

l_t Constante de torsion.

CG Centre de gravité.

CC Centre de découpe

CC Centre de découpe.

A_{eff} Aire efficace de la section.

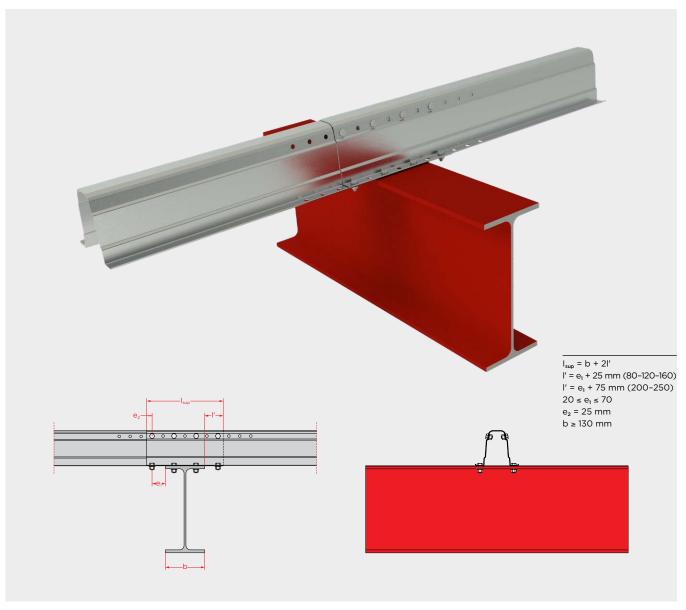
 $W_{y,eff}$ Inertie de la section efficace de l'axe yy. Module élastique de la section efficace

de l'axe yy.

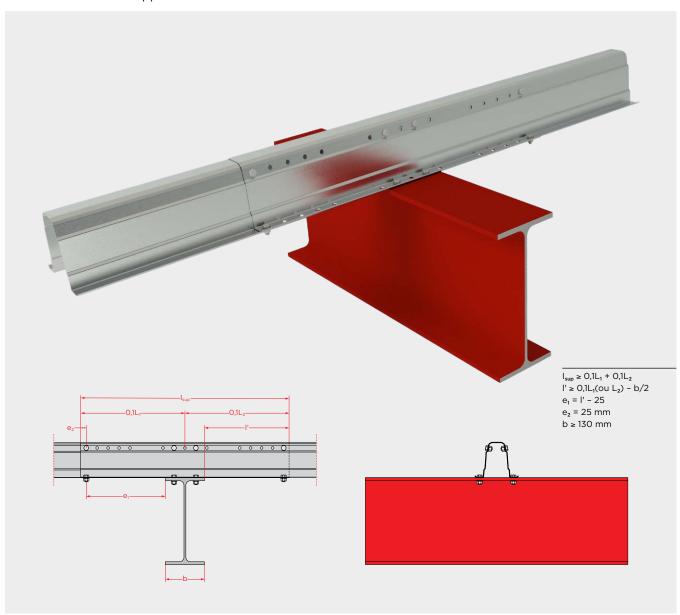
 $I_{z,eff}$ Inertie de la section efficace de l'axe zz. $W_{z,eff}$ Module élastique de la section efficace

de l'axe zz.

cg,eff Centre de gravité de la section efficace.


Note

Les poids indiqués sont des poids théoriques calculés à partir des dimensions nominales de la section et sont sensibles aux variations dans les tolérances d'acier prévues à la norme EN 10051.


1. Modification simple entre supports

2. Modification simple sur le support

3. Renforcement sur le support

Légende

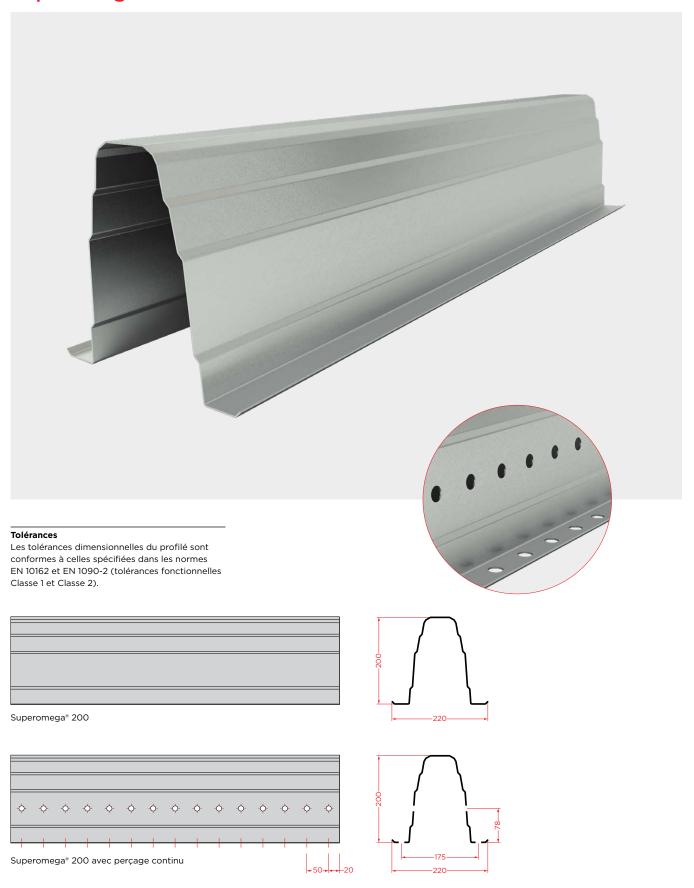
 I_{sup} Longueur du chevauchement.

l' Distance entre l'extrémité de la bride de support et l'extrémité de la tige.

 ${\sf e_1}$ Distance entre l'extrémité de la bride et le centre de la vis d'extrémité.

 ${\rm e_2}$ Distance entre le centre de la vis d'extrémité et l'extrémité de la tige.

 $\mathsf{L_1} \, \mathsf{e} \, \mathsf{L_2}$ Longueurs des portée adjacentes au support.


b Largeur de da bride supérieure du faisceau de support.

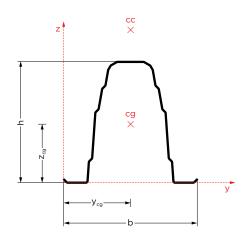
Notes

Vis M10 classe 8.8.

Les rondelles pour les vis de la bride supérieure doivent avoir un rayon externe ≤ 12 mm.

Superomega® 200

Propriétés Géométriques


				Prop	riétés	de la S	ection	Brute						
Section Poids Hauteur h Largeur b Epaisseur Section Brute Poids Hauteur h Largeur b Aire Epaisseur Section Brute														
Section	Polas	h	b	Peinture	t _{nom}	t _{eff}	A _{brute}	$I_{y,brute}$	I _{z,brute}	I _w	l _t	$Y_{cg}=Y_{cc}$	\mathbf{Z}_{cg}	Z _{cc}
	kg/m	mm	mm	m²/m	mm	mm	cm²	cm⁴	cm ⁴	cm ⁶	x10-4 cm4	mm	mm	mm
Superomega® 200×1,5	6,54				1,50	1,46	8,10	397,27	295,57	3289,08	575,27			
Superomega® 200×2,0	8,71	200	220	1,110	2,00	1,96	10,87	533,33	396,79	4415,48	1391,81	109,9	95,4	256,3
Superomega® 200×2,5	10,89				2,50	2,46	13,64	669,38	498,02	5541,88	2751,80			

S280GD

					Prop	riété	s de l	a Sec	tion	Effica	ce							
	Co	mpress	ion	Fle	exion Po	sitive o	de l'Axe	Y	Fle	xion Né	gative	de l'Ax	e Y		Flexio	n de l'	Axe Z	
Section	A_{eff}	$Y_{cg,eff}$	$Z_{cg,eff}$	A _{eff}	l _{y,eff}	$W_{y,eff}$	Y _{cg,eff}	$Z_{cg,eff}$	A _{eff}	I _{y,eff}	$\mathbf{W}_{y,eff}$	$Y_{cg,eff}$	$Z_{cg,eff}$	A _{eff}	I _{z,eff}	$W_{z,eff}$	Y _{cg,eff}	$Z_{cg,eff}$
	cm²	mm	mm	cm²	cm⁴	cm³	mm	mm	cm²	cm⁴	cm³	mm	mm	cm²	cm ⁴	cm³	mm	mm
Superomega* 200×1,5	7,61	109,9	96,5	7,89	392,51	37,43	109,9	94,1	8,02	390,11	38,00	109,9	96,3	7,86	285,45	26,85	111,8	96,1
Superomega® 200×2,0	10,86	109,9	95,4	10,87	533,33	51,48	109,9	95,4	10,84	530,84	51,36	109,9	95,6	10,81	394,26	37,65	110,2	95,5
Superomega* 200×2,5	13,63	109,9	95,4	13,64	669,38	64,61	109,9	95,4	13,64	669,38	64,61	109,9	95,4	13,64	497,88	47,69	109,9	95,4

S350GD

					Prop	oriété	s de l	a Sec	tion	Effica	ce							
	Co	mpress	ion	Fle	exion Po	sitive	de l'Axe	Y	Fle	xion Né	gative	de l'Ax	e Y		Flexio	on de l'	Axe Z	
Section	A _{eff}	$Y_{cg,eff}$	$Z_{cg,eff}$	A _{eff}	I _{y,eff}	$W_{y,eff}$	Y _{cg,eff}	$Z_{cg,eff}$	A_{eff}	I _{y,eff}	$W_{y,eff}$	Y _{cg,eff}	$Z_{cg,eff}$	A _{eff}	I _{z,eff}	W _{z,eff}	$\mathbf{Y}_{cg,eff}$	$Z_{cg,eff}$
	cm²	mm	mm	cm²	cm ⁴	cm³	mm	mm	cm²	cm⁴	cm³	mm	mm	cm²	cm⁴	cm³	mm	mm
Superomega® 200×1,5	7,41	109,9	97,7	7,89	392,51	37,43	109,9	94,1	7,97	385,61	37,77	109,9	96,9	7,78	281,76	26,34	112,5	96,3
Superomega® 200×2,0	10,53	109,9	96,0	10,87	533,33	51,48	109,9	95,4	10,78	525,73	51,11	109,9	96,1	10,71	389,65	36,99	110,8	95,8
Superomega® 200×2,5	13,63	109,9	95,4	13,64	669,38	64,61	109,9	95,4	13,61	666,70	64,48	109,9	95,6	13,63	497,08	47,59	110,0	95,4

Légende

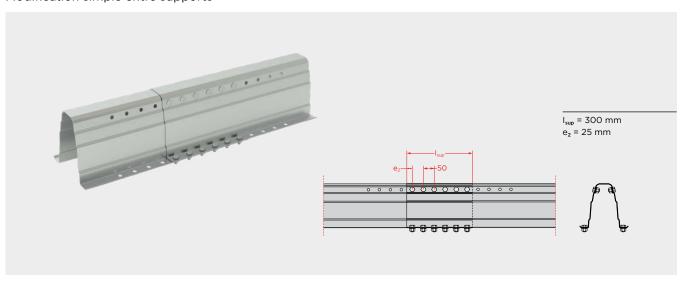
 $\begin{array}{lll} A_{\text{brute}} & \text{Aire brute de la section transversale.} \\ I_{\text{y,brute}} & \text{Inertie de la section brute de l'axe yy.} \\ I_{\text{z,brute}} & \text{Inertie de la section brute de l'axe zz.} \\ I_{\text{w}} & \text{Constante de déformation.} \end{array}$

l_w Constante de deformation.
l_t Constante de torsion.
cg Centre de gravité.
cc Centre de découpe.

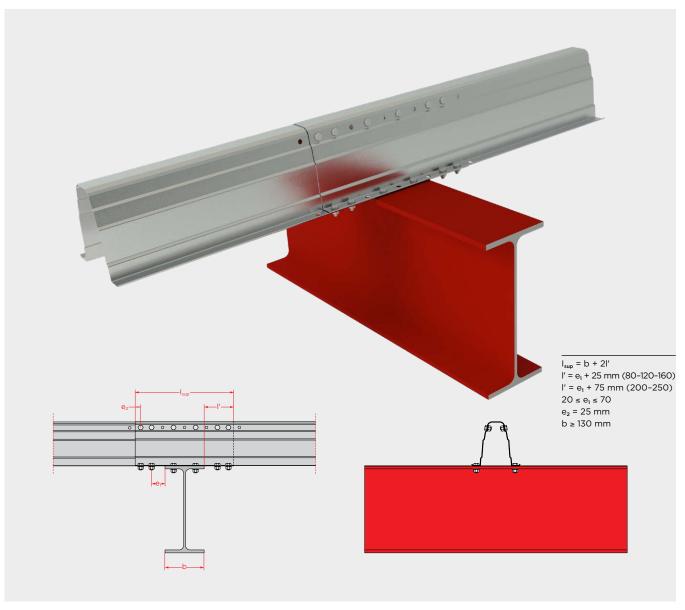
 $\begin{array}{ll} {\sf A}_{\sf eff} & {\sf Aire} \ {\sf efficace} \ {\sf de} \ {\sf la} \ {\sf section}. \\ {\sf I}_{\sf y,eff} & {\sf Inertie} \ {\sf de} \ {\sf la} \ {\sf section} \ {\sf efficace} \ {\sf de} \ {\sf l'axe} \ {\sf yy}. \\ {\sf W}_{\sf y,eff} & {\sf Module} \ {\sf \'elastique} \ {\sf de} \ {\sf la} \ {\sf section} \ {\sf efficace} \end{array}$

de l'axe yy.

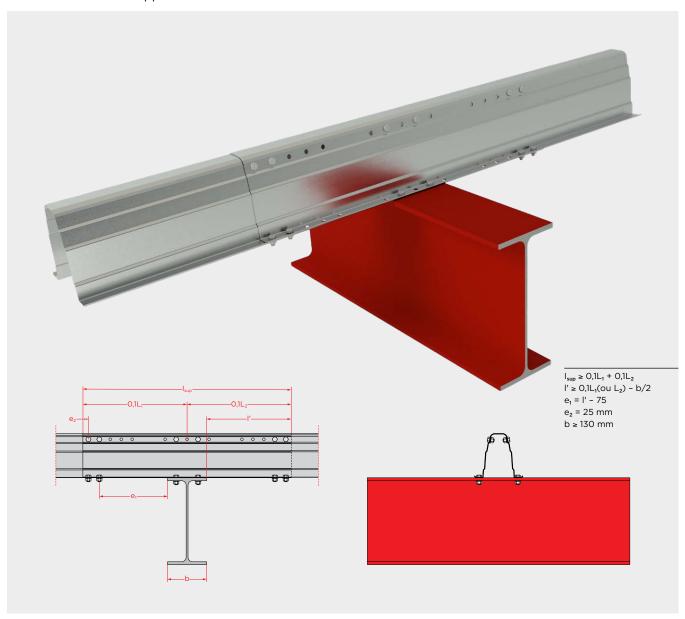
 $I_{z,eff}$ Inertie de la section efficace de l'axe zz. $W_{z,eff}$ Module élastique de la section efficace


de l'axe zz.

cg,eff Centre de gravité de la section efficace.


Note

Les poids indiqués sont des poids théoriques calculés à partir des dimensions nominales de la section et sont sensibles aux variations dans les tolérances d'acier prévues à la norme EN 10051.


1. Modification simple entre supports

2. Modification simple sur le support

3. Renforcement sur le support

Légende

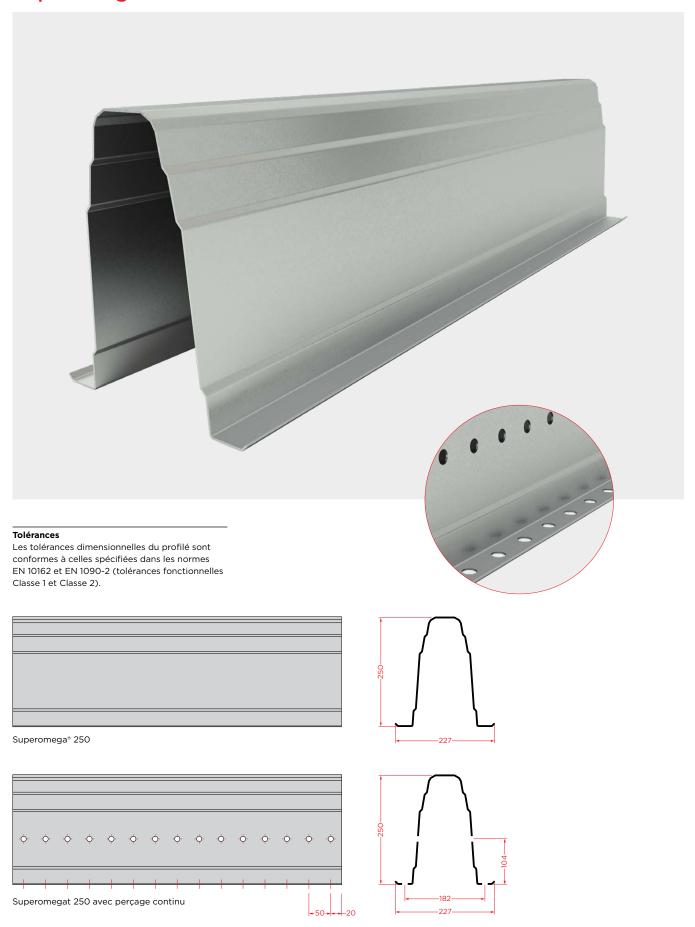
I_{sup} Longueur du chevauchement.

l' Distance entre l'extrémité de la bride de support et l'extrémité de la tige.

e₁ Distance entre l'extrémité de la bride et le centre de la vis d'extrémité.

 ${\sf e_2}$ Distance entre le centre de la vis d'extrémité et l'extrémité de la tige.

 $L_1 \, e \, L_2$ Longueurs des portée adjacentes au support.


b Largeur de da bride supérieure du faisceau de support.

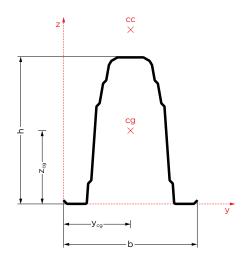
Notes

Vis M10 classe 8.8.

Les rondelles pour les vis de la bride supérieure doivent avoir un rayon externe ≤ 12 mm.

Superomega® 250

Propriétés Géométriques


				Prop	riétés	de la S	ection	Brute						
Section Poids Hauteur h Largeur h Épaisseur Section Brute Poids Hauteur h Largeur Aire Épaisseur Section Brute														
Section	Polas	h	b	Peinture	t _{nom}	t _{eff}	A _{brute}	$I_{y,brute}$	I _{z,brute}	I _w	l _t	$Y_{cg} = Y_{cc}$	\mathbf{Z}_{cg}	Z _{cc}
	kg/m	mm	mm	m²/m	mm	mm	cm²	cm⁴	cm⁴	cm ⁶	x10-4 cm4	mm	mm	mm
Superomega® 250×2,0	10,27				2,00	1,96	12,83	942,64	498,18	8811,02	1643,39			
Superomega® 250×2,5	12,83	250	227	1,308	2,50	2,46	16,11	1183,11	625,26	11058,72	3249,21	113,4	120,3	325,0
Superomega* 250×3,0	15,40				3,00	2,96	19,38	1423,58	752,35	13306,43	5660,41			

S280GD

					Prop	riété	s de	la Sec	tion	Effica	ce							
	Co	mpress	ion	Fle	exion Po	sitive c	le l'Axe	Y	Fle	xion Né	gative	de l'Ax	e Y		Flexio	n de l'	Axe Z	
Section	A_{eff}	$Y_{cg,eff}$	$Z_{cg,eff}$	A _{eff}	I _{y,eff}	$W_{y,eff}$	$\mathbf{Y}_{cg,eff}$	$Z_{cg,eff}$	A _{eff}	l _{y,eff}	$W_{y,eff}$	$\mathbf{Y}_{cg,eff}$	$Z_{cg,eff}$	A_{eff}	I _{z,eff}	$W_{z,eff}$	$\mathbf{Y}_{cg,eff}$	$Z_{cg,eff}$
	cm²	mm	mm	cm²	cm⁴	cm³	mm	mm	cm²	cm⁴	cm³	mm	mm	cm²	cm⁴	cm³	mm	mm
Superomega® 250×2,0	11,18	113,4	122,9	12,83	942,64	73,26	113,4	120,3	12,82	940,28	73,16	113,4	120,5	12,03	461,18	41,10	117,7	122,0
Superomega® 250×2,5	14,80	113,4	121,9	16,11	1183,11	91,95	113,4	120,3	16,11	1183,11	91,95	113,4	120,3	15,54	600,23	54,45	115,7	121,2
Superomega® 250×3,0	18,59	113,4	121,1	19,38	1423,58	110,63	113,4	120,3	19,38	1423,58	110,63	113,4	120,3	19,13	742,42	65,96	114,2	120,6

S350GD

					Prop	riété	s de l	la Sec	tion	Effica	ce							
	Co	mpress	ion	FI	exion Po	sitive o	de l'Axe	Y	Fle	xion Né	gative	de l'Ax	e Y		Flexio	n de l'	Axe Z	
Section	A _{eff}	Y _{cg,eff}	$Z_{cg,eff}$	A _{eff}	I _{y,eff}	$W_{y,eff}$	Y _{cg,eff}	$Z_{cg,eff}$	A _{eff}	I _{y,eff}	$W_{y,eff}$	$Y_{cg,eff}$	$Z_{cg,eff}$	A _{eff}	I _{z,eff}	$W_{z,eff}$	Y _{cg,eff}	$Z_{cg,eff}$
	cm²	mm	mm	cm²	cm ⁴	cm³	mm	mm	cm²	cm⁴	cm³	mm	mm	cm²	cm⁴	cm³	mm	mm
Superomega* 250×2,0	10,90	113,4	123,4	12,83	942,64	73,26	113,4	120,3	12,76	932,45	72,84	113,4	121,0	11,86	450,97	39,80	118,8	122,6
Superomega* 250×2,5	14,42	113,4	122,4	16,11	1183,11	91,95	113,4	120,3	16,09	1180,95	91,86	113,4	120,4	15,30	587,85	52,81	116,8	121,8
Superomega* 250×3,0	18,12	113,4	121,5	19,38	1423,58	110,63	113,4	120,3	19,38	1423,58	110,63	113,4	120,3	18,85	728,44	65,31	115,2	121,1

Légende

 $\begin{array}{lll} A_{\text{brute}} & \text{Aire brute de la section transversale.} \\ I_{\text{y,brute}} & \text{Inertie de la section brute de l'axe yy.} \\ I_{\text{z,brute}} & \text{Inertie de la section brute de l'axe zz.} \\ I_{\text{w}} & \text{Constante de déformation.} \end{array}$

l_t Constante de deformation.

CG Centre de gravité.

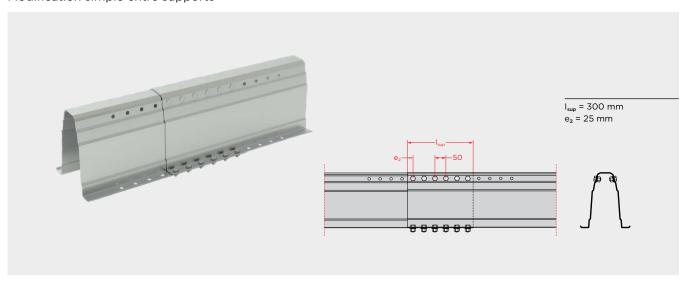
CC Centre de découpe.

 $\begin{array}{ll} A_{\text{eff}} & \quad \text{Aire efficace de la section.} \\ I_{\text{y,eff}} & \quad \text{Inertie de la section efficace de l'axe yy.} \end{array}$

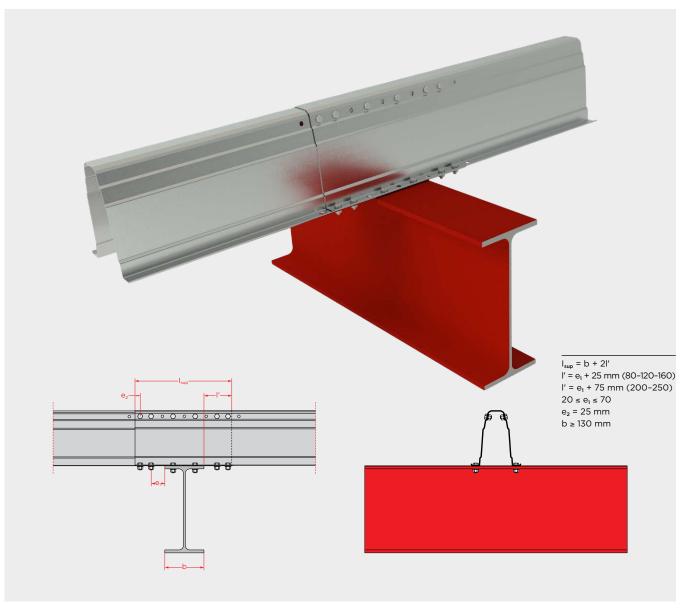
W_{y,eff} Module élastique de la section efficace

de l'axe yy.

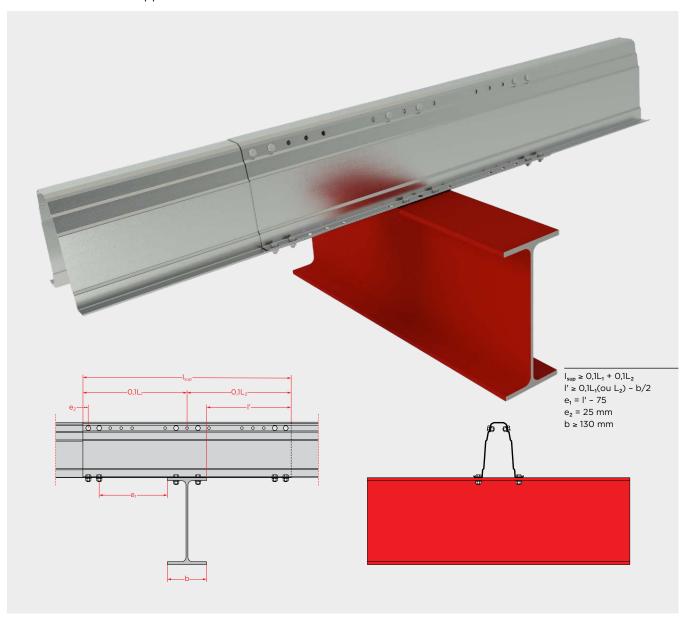
 $I_{z,eff}$ Inertie de la section efficace de l'axe zz. $W_{z,eff}$ Module élastique de la section efficace


de l'axe zz.

cg,eff Centre de gravité de la section efficace.


Note

Les poids indiqués sont des poids théoriques calculés à partir des dimensions nominales de la section et sont sensibles aux variations dans les tolérances d'acier prévues à la norme EN 10051.


1. Modification simple entre supports

2. Modification simple sur le support

3. Renforcement sur le support

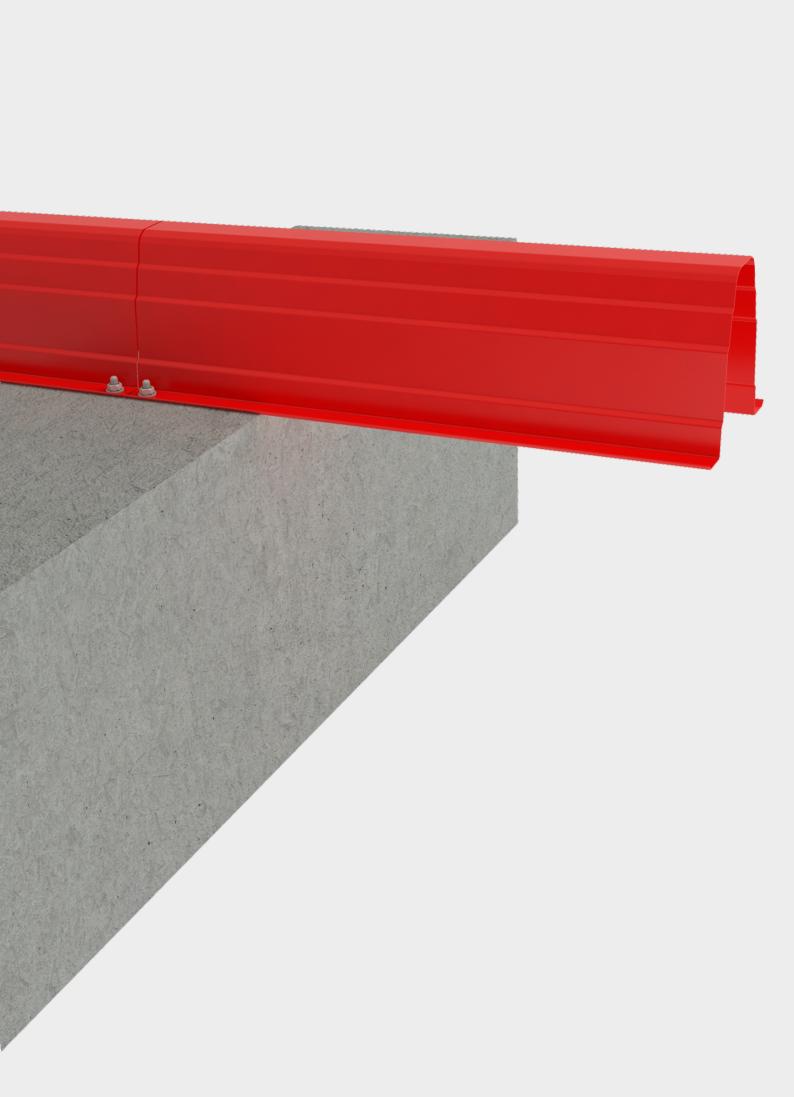
Légende

I_{sup} Longueur du chevauchement.

l' Distance entre l'extrémité de la bride de support et l'extrémité de la tige.

e₁ Distance entre l'extrémité de la bride et le centre de la vis d'extrémité.

 ${\sf e_2}$ Distance entre le centre de la vis d'extrémité et l'extrémité de la tige.


 $L_1 \, e \, L_2$ Longueurs des portée adjacentes au support.

b Largeur de da bride supérieure du faisceau de support.

Notes

Vis M10 classe 8.8.

Les rondelles pour les vis de la bride supérieure doivent avoir un rayon externe \leq 12 mm.

Siège Social

Av. de São Lourenço, Nº 41 4705-444 Celeirós, Braga Portugal

T +351 253 305 600 info@ofeliz.com ofeliz.com

Tôle et Profilés

Av. Eng. José Rolo Parque Ind. Celeirós, Pav. i3 4705-414 Celeirós, Braga Portugal

T +351 253 674 866* cp@ofeliz.com

